Note
Click here to download the full example code
1.1.3. Generating an input fileΒΆ
This examples shows how to generate an input file in HDF5-format, which can then be processed by the py-fmas library code.
This is useful when the project-specific code is separate from the py-fmas library code.
We start by importing the required py-fmas functionality. Since the file-input for py-fmas is required to be provided in HDF5-format, we need some python package that offers the possibility to read and write this format. Here we opted for the python module h5py which is listed as one of the dependencies of the py-fmas package.
import h5py
import numpy as np
import numpy.fft as nfft
We then define the desired propagation constant
def beta_fun_detuning(w):
r'''Function defining propagation constant
Implements group-velocity dispersion with expansion coefficients
listed in Tab. I of Ref. [1]. Expansion coefficients are valid for
:math:`lambda = 835\,\mathrm{nm}`, i.e. for :math:`\omega_0 \approx
2.56\,\mathrm{rad/fs}`.
References:
[1] J. M. Dudley, G. Genty, S. Coen,
Supercontinuum generation in photonic crystal fiber,
Rev. Mod. Phys. 78 (2006) 1135,
http://dx.doi.org/10.1103/RevModPhys.78.1135
Note:
A corresponding propagation constant is implemented as function
`define_beta_fun_PCF_Ranka2000` in `py-fmas` module
`propatation_constant`.
Args:
w (:obj:`numpy.ndarray`): Angular frequency detuning.
Returns:
:obj:`numpy.ndarray` Propagation constant as function of
frequency detuning.
'''
# ... EXPANSION COEFFICIENTS DISPERSION
b2 = -1.1830e-2 # (fs^2/micron)
b3 = 8.1038e-2 # (fs^3/micron)
b4 = -0.95205e-1 # (fs^4/micron)
b5 = 2.0737e-1 # (fs^5/micron)
b6 = -5.3943e-1 # (fs^6/micron)
b7 = 1.3486 # (fs^7/micron)
b8 = -2.5495 # (fs^8/micron)
b9 = 3.0524 # (fs^9/micron)
b10 = -1.7140 # (fs^10/micron)
# ... PROPAGATION CONSTANT (DEPENDING ON DETUNING)
beta_fun_detuning = np.poly1d([b10/3628800, b9/362880, b8/40320,
b7/5040, b6/720, b5/120, b4/24, b3/6, b2/2, 0., 0.])
return beta_fun_detuning(w)
Next, we define all parameters needed to specify a simulation run
# -- DEFINE SIMULATION PARAMETERS
# ... COMPUTATIONAL DOMAIN
t_max = 3500. # (fs)
t_num = 2**14 # (-)
z_max = 0.1*1e6 # (micron)
z_num = 4000 # (-)
z_skip = 20 # (-)
t = np.linspace(-t_max, t_max, t_num, endpoint=False)
w = nfft.fftfreq(t.size, d=t[1]-t[0])*2*np.pi
# ... MODEL SPECIFIC PARAMETERS
# ... PROPAGATION CONSTANT
c = 0.29979 # (fs/micron)
lam0 = 0.835 # (micron)
w0 = 2*np.pi*c/lam0 # (rad/fs)
beta_w = beta_fun_detuning(w-w0)
gam0 = 0.11e-6 # (1/W/micron)
n2 = gam0*c/w0 # (micron^2/W)
# ... PARAMETERS FOR RAMAN RESPONSE
fR = 0.18 # (-)
tau1= 12.2 # (fs)
tau2= 32.0 # (fs)
# ... INITIAL CONDITION
t0 = 28.4 # (fs)
P0 = 1e4 # (W)
E_0t_fun = lambda t: np.real(np.sqrt(P0)/np.cosh(t/t0)*np.exp(-1j*w0*t))
E_0t = E_0t_fun(t)
The subsequent code will store the simulation parameters defined above to the file input_file.h5 in the current working directory.
def save_data_hdf5(file_path, data_dict):
with h5py.File(file_path, 'w') as f:
for key, val in data_dict.items():
f.create_dataset(key, data=val)
data_dict = {
't_max': t_max,
't_num': t_num,
'z_min': 0.0,
'z_max': z_max,
'z_num': z_num,
'z_skip': z_skip,
'E_0t': E_0t,
'beta_w': beta_w,
'n2': n2,
'fR': fR,
'tau1': tau1,
'tau2': tau2,
'out_file_path': 'out_file.h5'
}
save_data_hdf5('input_file.h5', data_dict)
An example, showing how to use py-fmas as a black-box simulation tool that performs a simulation run for the propagation scenario stored under the file input_file.h5 is available under the link below:
Using fmas as a black-box application
Total running time of the script: ( 0 minutes 0.000 seconds)