.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_tutorials/errors/g_instabilities_dz.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_tutorials_errors_g_instabilities_dz.py: Numerical instabilities of the Nonlinear Schrödinger Equation ============================================================= This example demonstrates numerical instabilities that build up during simulations of the standard nonlinear Schrödinger equation when the :math:`z`-increment used for propagtion is too small. Here, the simple split-step Fourier method is used and the instabilities develop from round-off errors during the propagation of a fundamental soliton. The numerical instabilities of the nonlinear Schrödinger equation developing on top of plain wave solutions where first studied in Ref. [WH1986]_. An in-depth study of instabilities of the split-step Fourier method for the simulation of the nonlinear Schrödinger equation, developing on a background given by a soliton, is provided by Ref. [L2012]_. .. codeauthor:: Oliver Melchert .. GENERATED FROM PYTHON SOURCE LINES 22-24 We first import the functionality needed to perform the sequence of numerical experiments: .. GENERATED FROM PYTHON SOURCE LINES 24-33 .. code-block:: default import sys import numpy as np import numpy.fft as nfft from fmas.models import ModelBaseClass from fmas.config import FTFREQ, FT, IFT, C0 from fmas.solver import SiSSM, SySSM, IFM_RK4IP, LEM_SySSM, CQE from fmas.grid import Grid .. GENERATED FROM PYTHON SOURCE LINES 34-44 Next, we implement a model for the nonlinear Schrödinger equation. In particular, we here consider the standard nonlinear Schrödinger equation, given by .. math:: \partial_z u = -i \frac{\beta_2}{2}\partial_t^2 u + i\gamma |u|^2 u, wherein :math:`u = u(z, t)` represents the slowly varying pulse envelope, :math:`\beta_2=-1` is the second order dispersion parameter, and :math:`\gamma=1` is the nonlinear parameter: .. GENERATED FROM PYTHON SOURCE LINES 44-60 .. code-block:: default class NSE(ModelBaseClass): def __init__(self, w, b2 = -1.0, gamma = 1.): super().__init__(w, 0.5*b2*w*w) self.gamma = gamma @property def Lw(self): return 1j*self.beta_w def Nw(self, uw): ut = IFT(uw) return 1j*self.gamma*FT(np.abs(ut)**2*ut) .. GENERATED FROM PYTHON SOURCE LINES 61-64 Next, we initialize the computational domain and use a simple split-step Fourier method to propagate a single fundamental soliton for ten soliton periods. .. GENERATED FROM PYTHON SOURCE LINES 64-74 .. code-block:: default # -- INITIALIZATION STAGE # ... COMPUTATIONAL DOMAIN grid = Grid( t_max = 30., t_num = 2**10) t, w = grid.t, grid.w # ... NSE MODEL model = NSE(w, b2=-1., gamma=1.) # ... INITIAL CONDITION u_0t = 1./np.cosh(t) .. GENERATED FROM PYTHON SOURCE LINES 75-77 In a first numerical experiment, the stepsize is intentionally kept very large in order to allow the numerical istabilities to build up. .. GENERATED FROM PYTHON SOURCE LINES 77-83 .. code-block:: default solver = SySSM(model.Lw, model.Nw) solver.set_initial_condition(w, FT(u_0t)) solver.propagate(z_range = 10*np.pi, n_steps = 511, n_skip = 1) z, utz = solver.z_, solver.utz .. GENERATED FROM PYTHON SOURCE LINES 84-89 In this case, instabilities are expected to build up since the :math:`z`-increment :math:`\Delta z`, used by the propagation algorithm, exceeds the threshold increment :math:`\Delta z_{\mathrm{T}}=2\pi/\mathrm{max}(\omega)` (both increments are displayed below). .. GENERATED FROM PYTHON SOURCE LINES 89-98 .. code-block:: default # -- MAXIMUM FREQUENCY SUPPORTED ON COMPUTATIONAL GRID w_max = np.pi/(t[1]-t[0]) # -- THRESHOLD INCREMENT dz_T = np.pi*2/w_max**2 print("Increment dz =", z[1]-z[0]) print("Threshold increment dz_T =", dz_T) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Increment dz = 0.061479308289428436 Threshold increment dz_T = 0.0021856605344040803 .. GENERATED FROM PYTHON SOURCE LINES 99-101 In a second numerical experiment, the stepsize is set small enough to shift the resonance outside the computational domain. .. GENERATED FROM PYTHON SOURCE LINES 101-110 .. code-block:: default solver = SySSM(model.Lw, model.Nw) solver.set_initial_condition(w, FT(u_0t)) solver.propagate(z_range = 10*np.pi, n_steps = 15000, n_skip = 1) z2, utz2 = solver.z_, solver.utz print("Increment dz =", z2[1]-z2[0]) print("Threshold increment dz_T =", dz_T) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Increment dz = 0.0020943951023931952 Threshold increment dz_T = 0.0021856605344040803 .. GENERATED FROM PYTHON SOURCE LINES 111-117 Next, we prepare a figure that shows the results of the above to experiments. The left subfigure shows the results of the first simulation run in which the numerical instabilities and their predicted locations are shown. The right subfigure shows the results of second simulation run in which the :math:`z`-increment was small enough to shift the instabilities outside the computational domain. .. GENERATED FROM PYTHON SOURCE LINES 117-179 .. code-block:: default import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.colors as col f, (ax,ax2) = plt.subplots(1, 2, figsize=(8,4)) # -- EXAMPLE WITH INSTABILITIES dz = z[1]-z[0] w_I = lambda n: np.sqrt(n*2*np.pi*2./dz) shift=nfft.fftshift Iw_ini = np.abs(FT(utz[0]))**2 Iw_fin = np.abs(FT(utz[-1]))**2 ax.plot(shift(w), shift(Iw_ini)/np.max(Iw_ini), color='gray', dashes=[2,2], lw=1., label='$z=0$') ax.plot(shift(w), shift(Iw_fin)/np.max(Iw_ini), color='k', lw=1., label='$z=10\pi$') for n in range(1,20,1): ax.axvline(w_I(n), lw=0.75) ax.axvline(-w_I(n), lw=0.75) dw_lim = (-35,35) dw_ticks = (-30, -15, 0, 15, 30) ax.tick_params(axis='x', length=2., pad=2, top=False) ax.set_xlim(dw_lim) ax.set_xticks(dw_ticks) ax.set_xlabel(r"Detuning $\omega$") y_lim = (1e-35,10) y_ticks = (1e-30,1e-20,1e-10,1) ax.tick_params(axis='y', length=2., pad=2, top=False) ax.set_yscale('log') ax.set_ylim(y_lim) ax.set_yticks(y_ticks) ax.set_ylabel(r"Spectral intensity $I_\omega(z)/\mathrm{max}(I_\omega(z=0)}$") ax.set_title(r"Numerical instabilities build up") ax.legend() # -- EXAMPLE WITHOUT INSTABILITIES Iw_ini = np.abs(FT(utz2[0]))**2 Iw_fin = np.abs(FT(utz2[-1]))**2 ax2.plot(shift(w), shift(Iw_ini)/np.max(Iw_ini), color='gray', dashes=[2,2], lw=1., label='$z=0$') ax2.plot(shift(w), shift(Iw_fin)/np.max(Iw_ini), color='k', lw=1., label='$z=10\pi$') ax2.tick_params(axis='x', length=2., pad=2, top=False) ax2.set_xlim(dw_lim) ax2.set_xticks(dw_ticks) ax2.set_xlabel(r"Detuning $\omega$") ax2.tick_params(axis='y', length=2., pad=2, top=False) ax2.set_yscale('log') ax2.set_ylim(y_lim) ax2.set_yticks(y_ticks) ax2.set_title(r"No numerical instabilities") ax2.legend() plt.show() .. image:: /auto_tutorials/errors/images/sphx_glr_g_instabilities_dz_001.png :alt: Numerical instabilities build up, No numerical instabilities :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 180-191 **References:** .. [WH1986] J.A.C. Weideman, B.M. Herbst, Split-step methods for the solution of the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 23 (1986) 485, http://www.jstor.org/stable/2157521. .. [L2012] T.I. Lakoba, Instability Analysis of the Split-Step Fourier Method on the Background of a Soliton of the Nonlinear Schrödinger Equation, Numerical Methods for Partial Differential Equations 28 (2012) 641, https://doi.org/10.1002/num.20649 .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 4.361 seconds) .. _sphx_glr_download_auto_tutorials_errors_g_instabilities_dz.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: g_instabilities_dz.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: g_instabilities_dz.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_